

Welcome to pygorpho

Welcome to the documentation for pygorpho. This is a library for fast 3D mathematical morphology using CUDA.

Features

	Dilation and erosion for grayscale 3D images.

	Support for flat or grayscale structuring elements.

	A van Herk/Gil-Werman implementation for fast dilation/erosion with flat line segments in 3D.

	Automatic block processing for 3D images which can’t fit in GPU memory.

Contents

	Installation
	Installing with pip

	Installing from source

	API Documentation
	pygorpho.flat

	pygorpho.gen

	pygorpho.strel

	pygorpho.constants

	pygorpho.cuda

	License

Resources

	Free software: MIT license

	Source code: https://github.com/patmjen/pygorpho

	PyPI: https://pypi.org/project/pygorpho/

Installation

This page contains instructions on how to install pygorpho.
To use the library you must have an NVIDIA GPU and install CUDA Toolkit [https://developer.nvidia.com/cuda-toolkit] 9.2 or later.

Installing with pip

Install with pip:

pip install pygorpho

Installing from source

First, you need a compatible C++ compiler, which supports C++14.
Then, following these instructions should allow you to build and install the package:

	Clone the repo: git clone https://github.com/patmjen/pygorpho.git

	Change directory: cd pygorpho

	Install the required Python packages: pip install numpy scikit-build cmake ninja

	Build and install: python setup.py install

That should be it! To test, run python, and try to import pygorpho as pg.

API Documentation

Fast 3D mathematical morphology using CUDA.

Modules:

	pygorpho.flat

	pygorpho.gen

	pygorpho.strel

	pygorpho.constants

	pygorpho.cuda

pygorpho.flat

Mathematical morphology with flat (binary) structuring elements.

	
pygorpho.flat.morph(vol, strel, op, block_size=[256, 256, 256])

	Morphological operation with flat structuring element.

	Parameters

	
	vol – Volume to apply operation to. Must be convertible to numpy array of at
most 3 dimensions.

	strel – Structuring element. Must be convertible to numpy array of at most 3
dimensions.

	op – Operation to perform. Must be either DILATE, ERODE, OPEN,
CLOSE, TOPHAT, CLOSE from constants.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of the operation.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple dilation with an 11 x 11 x 11 box structuring element
vol = np.zeros((100, 100, 100))
vol[50, 50, 50] = 1
strel = np.ones((11, 11, 11))
res = pg.flat.morph(vol, strel, pg.DILATE)

	
pygorpho.flat.dilate(vol, strel, block_size=[256, 256, 256])

	Dilation with flat structuring element.

	Parameters

	
	vol – Volume to dilate/erode. Must be convertible to numpy array of at most
3 dimensions.

	strel – Structuring element. Must be convertible to numpy array of at most 3
dimensions.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of dilation.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple dilation with an 11 x 11 x 11 box structuring element
vol = np.zeros((100, 100, 100))
vol[50, 50, 50] = 1
strel = np.ones((11, 11, 11))
res = pg.flat.dilate(vol, strel)

	
pygorpho.flat.erode(vol, strel, block_size=[256, 256, 256])

	Erosion with flat structuring element.

	Parameters

	
	vol – Volume to dilate/erode. Must be convertible to numpy array of at most
3 dimensions.

	strel – Structuring element. Must be convertible to numpy array of at most 3
dimensions.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of erosion.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple erosion with an 11 x 11 x 11 box structuring element
vol = np.ones((100, 100, 100))
vol[50, 50, 50] = 0
strel = np.ones((11, 11, 11))
res = pg.flat.erode(vol, strel)

	
pygorpho.flat.open(vol, strel, block_size=[256, 256, 256])

	Opening with flat structuring element.

	Parameters

	
	vol – Volume to open. Must be convertible to numpy array of at most
3 dimensions.

	strel – Structuring element. Must be convertible to numpy array of at most 3
dimensions.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of opening.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple opening with an 11 x 11 x 11 box structuring element
vol = np.zeros((100, 100, 100))
vol[10:15,10:15,48:53] = 1 # Small box
vol[60:80,60:80,40:60] = 1 # Big box
strel = np.ones((11, 11, 11))
res = pg.flat.open(vol, strel)

	
pygorpho.flat.close(vol, strel, block_size=[256, 256, 256])

	Closing with flat structuring element.

	Parameters

	
	vol – Volume to close. Must be convertible to numpy array of at most
3 dimensions.

	strel – Structuring element. Must be convertible to numpy array of at most 3
dimensions.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of closing.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple closing with an 11 x 11 x 11 box structuring element
vol = np.ones((100, 100, 100))
vol[10:15,10:15,48:53] = 0 # Small box
vol[60:80,60:80,40:60] = 0 # Big box
strel = np.ones((11, 11, 11))
res = pg.flat.close(vol, strel)

	
pygorpho.flat.tophat(vol, strel, block_size=[256, 256, 256])

	Top-hat transform with flat structuring element.

Also known as a white top hat transform.
It is given by tophat(x) = x - open(x).

	Parameters

	
	vol – Volume to top-hat transform. Must be convertible to numpy array of at
most 3 dimensions.

	strel – Structuring element. Must be convertible to numpy array of at most 3
dimensions.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of the top-hat transform.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple top-hat with an 11 x 11 x 11 box structuring element
vol = np.zeros((100, 100, 100))
vol[10:15,10:15,48:53] = 1 # Small box
vol[60:80,60:80,40:60] = 1 # Big box
strel = np.ones((11, 11, 11))
res = pg.flat.tophat(vol, strel)

	
pygorpho.flat.bothat(vol, strel, block_size=[256, 256, 256])

	Bot-hat transform with flat structuring element.

Also known as a black top-hat transform.
It is given by bothat(x) = close(x) - x.

	Parameters

	
	vol – Volume to bot-hat transform. Must be convertible to numpy array of at
most 3 dimensions.

	strel – Structuring element. Must be convertible to numpy array of at most 3
dimensions.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of the bot-hat transform.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple bot-hat with an 11 x 11 x 11 box structuring element
vol = np.ones((100, 100, 100))
vol[10:15,10:15,48:53] = 0 # Small box
vol[60:80,60:80,40:60] = 0 # Big box
strel = np.ones((11, 11, 11))
res = pg.flat.bothat(vol, strel)

	
pygorpho.flat.linear_morph(vol, line_steps, line_lens, op, block_size=[256, 256, 512])

	Morphological operation with flat line segment structuring elements.

Performs a morphological operation volume with a sequence of flat line
segments. Line segments are parameterized with a (integer) step vector and
a length giving the number of steps. The operation is the same for all line
segments.

The operations are performed using the van Herk/Gil-Werman algorithm
[H92] [GW93].

	Parameters

	
	vol – Volume to apply operation to. Must be convertible to numpy array of at
most 3 dimensions.

	line_steps – Step vector or sequence of step vectors. A step vector must have
integer coordinates and control the direction of the line segment.

	line_lens – Length or sequence of lengths. Controls the length of the line
segments. A length of 0 leaves the volume unchanged.

	op – Operation to perform for all line segments. Must be either DILATE
or ERODE from constants.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of the operation.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple dilation with an 11 x 15 x 21 box structuring element
vol = np.zeros((100,100,100))
vol[50, 50, 50] = 1
lineSteps = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
lineLens = [11, 15, 21]
res = pg.flat.linear_morph(vol, lineSteps, lineLens, pg.DILATE)

References

	H92(1,2,3,4,5,6,7)

	M. Van Herk, “A fast algorithm for local minimum and maximum
filters on rectangular and octagonal kernels,” Pattern Recognition
Letters 13. (pp. 517-521). 1992.

	GW93(1,2,3,4,5,6,7)

	J. Gil and M Werman, “Computing 2-D min, median, and max
filters,” IEEE Transactions on Pattern Analysis and Machine
Intelligence 24. (pp. 504-507). 1993.

	
pygorpho.flat.linear_dilate(vol, line_steps, line_lens, block_size=[256, 256, 512])

	Dilation with flat line segment structuring elements.

Erodes volume with a sequence of flat line segments. Line segments are
parameterized with a (integer) step vector and a length giving the number
of steps. The operations is the same for all line segments.

The operations are performed using the van Herk/Gil-Werman algorithm
[H92] [GW93].

	Parameters

	
	vol – Volume to dilate. Must be convertible to a numpy array of at most 3
dimensions.

	line_steps – Step vector or sequence of step vectors. A step vector must have
integer coordinates and control the direction of the line segment.

	line_lens – Length or sequence of lengths. Controls the length of the line
segments. A length of 0 leaves the volume unchanged.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of dilation.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple dilation with an 11 x 15 x 21 box structuring element
vol = np.zeros((100,100,100))
vol[50, 50, 50] = 1
lineSteps = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
lineLens = [11, 15, 21]
res = pg.flat.linear_dilate(vol, lineSteps, lineLens)

	
pygorpho.flat.linear_erode(vol, line_steps, line_lens, block_size=[256, 256, 512])

	Erosion with flat line segment structuring elements.

Erodes volume with a sequence of flat line segments. Line segments are
parameterized with a (integer) step vector and a length giving the number
of steps. The operations is the same for all line segments.

The operations are performed using the van Herk/Gil-Werman algorithm
[H92] [GW93].

	Parameters

	
	vol – Volume to erode. Must be convertible to a numpy array of at most 3
dimensions.

	line_steps – Step vector or sequence of step vectors. A step vector must have
integer coordinates and control the direction of the line segment.

	line_lens – Length or sequence of lengths. Controls the length of the line
segments. A length of 0 leaves the volume unchanged.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of erosion.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple erosion with an 11 x 15 x 21 box structuring element
vol = np.ones((100,100,100))
vol[50, 50, 50] = 0
lineSteps = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
lineLens = [11, 15, 21]
res = pg.flat.linear_erode(vol, lineSteps, lineLens)

	
pygorpho.flat.linear_open(vol, line_steps, line_lens, block_size=[256, 256, 512])

	Opening with flat line segment structuring elements.

Opens volume with a sequence of flat line segments. Line segments are
parameterized with a (integer) step vector and a length giving the number
of steps. The operations is the same for all line segments.

The operations are performed using the van Herk/Gil-Werman algorithm
[H92] [GW93].

	Parameters

	
	vol – Volume to open. Must be convertible to a numpy array of at most 3
dimensions.

	line_steps – Step vector or sequence of step vectors. A step vector must have
integer coordinates and control the direction of the line segment.

	line_lens – Length or sequence of lengths. Controls the length of the line
segments. A length of 0 leaves the volume unchanged.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of opening.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple opening with an 11 x 11 x 11 box structuring element
vol = np.zeros((100, 100, 100))
vol[10:15,10:15,48:53] = 1 # Small box
vol[60:80,60:80,40:60] = 1 # Big box
lineSteps = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
lineLens = [11, 11, 11]
res = pg.flat.linear_open(vol, lineSteps, lineLens)

	
pygorpho.flat.linear_close(vol, line_steps, line_lens, block_size=[256, 256, 512])

	Closing with flat line segment structuring elements.

Closes volume with a sequence of flat line segments. Line segments are
parameterized with a (integer) step vector and a length giving the number
of steps. The operations is the same for all line segments.

The operations are performed using the van Herk/Gil-Werman algorithm
[H92] [GW93].

	Parameters

	
	vol – Volume to close. Must be convertible to a numpy array of at most 3
dimensions.

	line_steps – Step vector or sequence of step vectors. A step vector must have
integer coordinates and control the direction of the line segment.

	line_lens – Length or sequence of lengths. Controls the length of the line
segments. A length of 0 leaves the volume unchanged.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of closing.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple closing with an 11 x 11 x 11 box structuring element
vol = np.ones((100, 100, 100))
vol[10:15,10:15,48:53] = 0 # Small box
vol[60:80,60:80,40:60] = 0 # Big box
lineSteps = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
lineLens = [11, 11, 11]
res = pg.flat.linear_close(vol, lineSteps, lineLens)

	
pygorpho.flat.linear_tophat(vol, line_steps, line_lens, block_size=[256, 256, 512])

	Top-hat transform with flat line segment structuring elements.

Top-hat transforms volume with a sequence of flat line segments. Line
segments are parameterized with a (integer) step vector and a length giving
the number of steps. The operations is the same for all line segments.

The operations are performed using the van Herk/Gil-Werman algorithm
[H92] [GW93].

	Parameters

	
	vol – Volume to top-hat transform. Must be convertible to a numpy array of at
most 3 dimensions.

	line_steps – Step vector or sequence of step vectors. A step vector must have
integer coordinates and control the direction of the line segment.

	line_lens – Length or sequence of lengths. Controls the length of the line
segments. A length of 0 leaves the volume unchanged.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of top-hat transform.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple top-hat with an 11 x 11 x 11 box structuring element
vol = np.ones((100, 100, 100))
vol[10:15,10:15,48:53] = 0 # Small box
vol[60:80,60:80,40:60] = 0 # Big box
lineSteps = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
lineLens = [11, 11, 11]
res = pg.flat.linear_tophat(vol, lineSteps, lineLens)

	
pygorpho.flat.linear_bothat(vol, line_steps, line_lens, block_size=[256, 256, 512])

	Bot-hat transform with flat line segment structuring elements.

Bot-hat transforms volume with a sequence of flat line segments. Line
segments are parameterized with a (integer) step vector and a length giving
the number of steps. The operations is the same for all line segments.

The operations are performed using the van Herk/Gil-Werman algorithm
[H92] [GW93].

	Parameters

	
	vol – Volume to bot-hat transform. Must be convertible to a numpy array of at
most 3 dimensions.

	line_steps – Step vector or sequence of step vectors. A step vector must have
integer coordinates and control the direction of the line segment.

	line_lens – Length or sequence of lengths. Controls the length of the line
segments. A length of 0 leaves the volume unchanged.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of bot-hat transform.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple bot-hat with an 11 x 11 x 11 box structuring element
vol = np.ones((100, 100, 100))
vol[10:15,10:15,48:53] = 0 # Small box
vol[60:80,60:80,40:60] = 0 # Big box
lineSteps = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
lineLens = [11, 11, 11]
res = pg.flat.linear_tophat(vol, lineSteps, lineLens)

pygorpho.gen

Mathematical morphology with general (grayscale) structuring elements.

	
pygorpho.gen.morph(vol, strel, op, block_size=[256, 256, 256])

	Morphological operation with general structuring element.

	Parameters

	
	vol – Volume to apply operation to. Must be convertible to numpy array of at
most 3 dimensions.

	strel – Structuring element. Must be convertible to numpy array of at most 3
dimensions.

	op – Operation to perform. Must be either DILATE or ERODE from
constants.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of the operation.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple dilation with an 11 x 11 x 11 box structuring element
vol = np.zeros((100, 100, 100))
vol[50, 50, 50] = 1
strel = np.ones((11, 11, 11))
res = pg.gen.morph(vol, strel, pg.DILATE)

	
pygorpho.gen.dilate(vol, strel, block_size=[256, 256, 256])

	Dilation with general structuring element.

	Parameters

	
	vol – Volume to dilate/erode. Must be convertible to numpy array of at most
3 dimensions.

	strel – Structuring element. Must be convertible to numpy array of at most 3
dimensions.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of dilation/erosion.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple dilation with an 11 x 11 x 11 box structuring element
vol = np.zeros((100, 100, 100))
vol[50, 50, 50] = 1
strel = np.ones((11, 11, 11))
res = pg.gen.dilate(vol, strel)

	
pygorpho.gen.erode(vol, strel, block_size=[256, 256, 256])

	Erosion with general structuring element.

	Parameters

	
	vol – Volume to dilate/erode. Must be convertible to numpy array of at most
3 dimensions.

	strel – Structuring element. Must be convertible to numpy array of at most 3
dimensions.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of dilation/erosion.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple erosion with an 11 x 11 x 11 box structuring element
vol = np.ones((100, 100, 100))
vol[50, 50, 50] = 0
strel = np.ones((11, 11, 11))
res = pg.gen.erode(vol, strel)

	
pygorpho.gen.open(vol, strel, block_size=[256, 256, 256])

	Opening with general structuring element.

	Parameters

	
	vol – Volume to open. Must be convertible to numpy array of at most
3 dimensions.

	strel – Structuring element. Must be convertible to numpy array of at most 3
dimensions.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of opening.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple opening with an 11 x 11 x 11 box structuring element
vol = np.zeros((100, 100, 100))
vol[10:15,10:15,48:53] = 1 # Small box
vol[60:80,60:80,40:60] = 1 # Big box
strel = np.ones((11, 11, 11))
res = pg.gen.open(vol, strel)

	
pygorpho.gen.close(vol, strel, block_size=[256, 256, 256])

	Closing with general structuring element.

	Parameters

	
	vol – Volume to close. Must be convertible to numpy array of at most
3 dimensions.

	strel – Structuring element. Must be convertible to numpy array of at most 3
dimensions.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of closing.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple closing with an 11 x 11 x 11 box structuring element
vol = np.ones((100, 100, 100))
vol[10:15,10:15,48:53] = 0 # Small box
vol[60:80,60:80,40:60] = 0 # Big box
strel = np.ones((11, 11, 11))
res = pg.gen.close(vol, strel)

	
pygorpho.gen.tophat(vol, strel, block_size=[256, 256, 256])

	Top-hat transform with general structuring element.

Also known as a white top-hat transform.
It is given by tophat(x) = x - open(x).

	Parameters

	
	vol – Volume to top-hat transform. Must be convertible to numpy array of at
most 3 dimensions.

	strel – Structuring element. Must be convertible to numpy array of at most 3
dimensions.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of the top-hat transform.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple top-hat with an 11 x 11 x 11 box structuring element
vol = np.zeros((100, 100, 100))
vol[10:15,10:15,48:53] = 1 # Small box
vol[60:80,60:80,40:60] = 1 # Big box
strel = np.ones((11, 11, 11))
res = pg.gen.tophat(vol, strel)

	
pygorpho.gen.bothat(vol, strel, block_size=[256, 256, 256])

	Bot-hat transform with general structuring element.

Also known as a black top-hat transform.
It is given by bothat(x) = close(x) - x.

	Parameters

	
	vol – Volume to bot-hat transform. Must be convertible to numpy array of at
most 3 dimensions.

	strel – Structuring element. Must be convertible to numpy array of at most 3
dimensions.

	block_size – Block size for GPU processing. Volume is sent to the GPU in blocks of
this size.

	Returns

	Volume of same size as vol with the result of the bot-hat transform.

	Return type

	numpy.array

Example

import numpy as np
import pygorpho as pg
Simple bot-hat with an 11 x 11 x 11 box structuring element
vol = np.ones((100, 100, 100))
vol[10:15,10:15,48:53] = 0 # Small box
vol[60:80,60:80,40:60] = 0 # Big box
strel = np.ones((11, 11, 11))
res = pg.gen.bothat(vol, strel)

pygorpho.strel

Structuring elements for mathematical morhology

	
pygorpho.strel.flat_ball_approx(radius, type=1)

	Returns approximation to flat ball using line segments.

The approximation is constructed according to [J19] and allows for
constant time morphology operations.

	Parameters

	
	r – Integer radius of flat ball.

	type – Whether to constrain the zonohedral approximation inside or outside
the sphere. Must either INSIDE, BEST, or OUTSIDE from
constants.

	Returns

	Tuple with step vectors and line lengths which parameterizes the line
segments.

	Return type

	(numpy.array, numpy.array)

Example

import numpy as np
import pygorpho as pg
Dilation with ball approximation of radius 25
vol = np.zeros((100,100,100))
vol[50, 50, 50] = 1
lineSteps, lineLens = pg.strel.flat_ball_approx(25)
res = pg.flat.linear_dilate(vol, lineSteps, lineLens)

References

	J19

	P. M. Jensen et al., “Zonohedral Approximation of Spherical
Structuring Element for Volumetric Morphology,” Scandinavian
Conference on Image Analysis (pp. 128-139). Springer. 2019.

pygorpho.constants

One stop shop for constants.

	
pygorpho.constants.DILATE = 0

	Dilation

	
pygorpho.constants.ERODE = 1

	Erosion

	
pygorpho.constants.OPEN = 2

	Opening

	
pygorpho.constants.CLOSE = 3

	Closing

	
pygorpho.constants.TOPHAT = 4

	Top hat

	
pygorpho.constants.BOTHAT = 5

	Bot hat

	
pygorpho.constants.INSIDE = 0

	Inside

	
pygorpho.constants.BEST = 1

	Best

	
pygorpho.constants.OUTSIDE = 2

	Outside

pygorpho.cuda

Query functions to get information about available CUDA devices

	
pygorpho.cuda.get_device_count()

	Returns the number of available CUDA devices.

	Returns

	Number of available CUDA devices.

	Return type

	int

	
pygorpho.cuda.get_device_name(device)

	Returns the name of queried CUDA device.

	Parameters

	device – ID of CUDA device.

	Returns

	Name of queried CUDA device.

	Return type

	str

License

MIT License

Copyright (c) 2020 Patrick Moeller Jensen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pygorpho	

Index

 P

P

 	
 	pygorpho (module)

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to pygorpho

 		
 Installation

 		
 Installing with pip

 		
 Installing from source

 		
 API Documentation

 		
 pygorpho.flat

 		
 pygorpho.gen

 		
 pygorpho.strel

 		
 pygorpho.constants

 		
 pygorpho.cuda

 		
 License

